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Abstract
We discuss the structure of two-dimensional conformal field theories at a central
charge c = 0 describing critical disordered systems, polymers and percolation.
We construct a novel extension of the c = 0 Virasoro algebra, characterized by
a number b measuring the effective number of massless degrees of freedom,
and by a logarithmic partner of the stress tensor. It is argued to be present
at a generic random critical point, lacking super Kac–Moody, or other higher
symmetries, and is a tool to describe and classify such theories. Interestingly,
this algebra is not only consistent with, but indeed naturally accommodates in
general an underlying global supersymmetry. Polymers and percolation realize
this algebra. Unexpectedly, we find that the c = 0 Kac table of the degenerate
fields contains two distinct theories with b = 5/6 and b = −5/8 which we
conjecture to correspond to percolation and polymers, respectively. A given
Kac-table field can be degenerate only in one of them. Remarkably, we also
find this algebra, and thereby an ensuing hidden supersymmetry, realized at
general replica-averaged critical points, for which we derive an explicit formula
for b.

PACS numbers: 11.25.Hf, 05.50.+q, 61.43.−j, 64.60.−i

Critical behaviour in systems with quenched disorder has remained a major challenge in
condensed matter physics. This area includes localization transitions of non-interacting
electrons, a prominent example being the integer quantum Hall effect plateau (IQHE) transition
[1], but also various random statistical mechanics systems. In two dimensions, powerful
techniques of Bethe ansatz or conformal field theory (CFT) should lead to non-perturbative
solutions. Unfortunately this has not been the case so far.

Random critical points in two dimensions, when studied by replica or supersymmetry
(SUSY) methods, are believed to be described by CFT [2] with a central charge c = 0. In
this letter we put forward a general algebra describing supersymmetric disordered systems.
It extends the Virasoro c = 0 algebra, and is characterized by a parameter b similar to and
3 Present address: Department of Physics, 1 Keble Road, Oxford University, Oxford OX1 3NP, UK.
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Figure 1. The multiplet of fields of conformal weight 2 for the group U(1|1). The arrows denote
the action of the fermionic supersymmetry generators. The stress tensor T is invariant when acted
upon by the supersymmetry generators.

extending that found previously by one of us [3]. The crucial novel feature is the appearance
of logarithms in the conformal symmetry generators themselves. These then proliferate in
almost all correlation functions. Simpler disordered systems, including the super Kac–Moody
current algebras, are rather special cases of this where additional symmetries prevent these
logarithmic features from appearing. It is interesting to note that as soon as the logarithmic
features that we describe (such as, e.g., equation (10)) appear in any c = 0 conformal theory,
SUSY can be accommodated automatically.

We show that this algebra is realized in polymers and percolation. Even though a great deal
is known about the properties of such geometrical models [4] from their respective mapping
onto q → 1 and n → 0 limits of q-state Potts and O(n) spin models, the nature of the CFT at
q = 1 and n = 0 is not so well understood. Indeed we show that at q = 1 or n = 0, where
both models become manifestly supersymmetric [5, 6], these theories develop precisely the
logarithmic features of the kind described by our formalism. These, apparently, have remained
unnoticed in the past. Many critical properties of polymers and percolation have been described
by c = 0 Kac-table degenerate operators. We show that the degeneracy condition of any Kac-
table operator fixes the value of b of the theory uniquely. We find, quite remarkably, that this
allows for only two possible values, b = 5/6 and b = −5/8, corresponding to two mutually
excluding sets of Kac-table primary operators being degenerate. As a consequence, a given
c = 0 Kac-table operator is degenerate only for one choice, not the other. Therefore, the
form of correlation functions as deduced from the c = 0 Kac-table degeneracy conditions of
a particular operator, cannot be all valid simultaneously for polymers and percolation. We
suggest that b = 5/6 corresponds to percolation, and b = −5/8 to polymers. This should be
checked numerically. For percolation this can be done using the super spin-chain formulation
of [6]. A recent mapping of the so-called spin-quantum Hall effect (SQHE) transition [7] onto
percolation [6] may be an indication that the structure we describe is realized in a variety of
delocalization transitions in two dimensions. We believe that the algebra developed in this
letter is a tool to describe and classify generic random critical behaviour in two dimensions.

General theory: We start by considering a generic disordered system where the disorder
average can be performed using SUSY [8]. It has been argued in [3] that the stress tensor of
such a system is always a member of a SUSY multiplet. The number of fields in this multiplet
depends on the symmetry group of the system. Any such theory must at least be invariant
under a minimal U(1|1) SUSY, giving rise to a four-dimensional multiplet of stress tensors
denoted by T, t, ξ and ξ̄ in [3]. If the SUSY is larger, as it is for example in the case of the
SQHE [6] (where it is SU(2|1)), this multiplet will contain more fields, but the above four
will always be contained therein. It will suffice to consider those. The action of the four
U(1|1) generators, two bosonic (J and j ) and two fermionic (η and η̄) on the multiplet of
stress tensors is schematically depicted in figure 1.

In [3] a special role is played by the ‘top’ field t of this multiplet, whose correlation
function with the stress tensor T was argued to be
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〈T (z)t (w)〉 = b

(z − w)4
(1)

where b was a special parameter which counts the number of effective degrees of freedom
of the disordered system. Different disordered systems, all having central charge c = 0, can
be distinguished by different values of b. It was further argued that the field t (z) together
with T (z) should generate an extension of the Virasoro algebra, via their operator product
expansion (OPE). However, the most general form of this OPE was not established. Indeed,
the OPE proposed in [3] was

T (z)t (0) = b

z4
+

2t (0)

z2
+

t ′(0)

z
+ · · · . (2)

Together with the OPE between the stress tensors

T (z)T (0) = 2T (0)

z2
+

T ′(0)

z
+ · · · (3)

(which simply reflects the fact that the central charge of a disordered system is zero) the OPE
(2) implies

t (z)t (0) = 2κT (0)

z2
+

κT ′(0)

z
+ · · · (4)

where κ is some parameter.
The OPEs (2)–(4) are trivially realized in free theories, where disorder is ‘switched off’, as

is readily verified by letting T = Tf + Tb and t = Tf − Tb. Here Tf/b are the stress tensors for
the non-interacting fermionic/bosonic parts. Moreover, these OPEs are also realized in certain
super Kac–Moody algebras, including [9]. However, these OPEs do not have enough structure
to describe generic random systems: by forming a suitable linear combination of T and t, one
simply obtains two commuting Virasoro algebras with equal and opposite central charges.
This shows that from the point of view of conformal symmetry (i.e. Virasoro algebras), a super
Kac–Moody algebra is isomorphic to a non-random system, albeit with potentially non-trivial
factors, replacing the free theories with stress tensors Tf/b above.

To rid ourselves of these shortcomings, we now propose the following generalization of
the OPE (2), which is still consistent with SUSY, but can accommodate theories with a richer
structure

T (z)t (0) = b

z4
+

2t (0) + λT (0)

z2
+

t ′(0)

z
+ · · · (5)

with some non-vanishing λ. Indeed, by acting on this OPE with the symmetry generators,
following figure 1, we can easily show that (3) is consistent with (5). It is probably not possible
to modify the OPE (5) any further while keeping it consistent with (3). Since the OPE (2)
describes only the simple ‘factorized’ theories discussed above, while the OPE (5) appears
to be the most general OPE we can write for a disordered system invariant under SUSY, we
conjecture that the OPE (5) is realized in a majority of SUSY disordered systems, as opposed
to special cases such as those described by super Kac–Moody algebras or free field theories.
Upon rescaling t → t/λ (thus: b → b/λ) we may set λ = 1 in (5), a choice adopted from
now on. Observe also that a shift by T, t → t + γ T preserves (5).

The OPE (5) harbours many surprises. Its consequences can be investigated with the
help of conformal invariance alone, without regard to SUSY. First of all, the form of the
OPE (5) implies that t is a logarithmic operator. Logarithmic operators, first introduced
in [10], are responsible for the appearance of logarithms in correlation functions directly at
criticality, without violating scale or conformal invariance4. The reason why the OPE (5) is
4 To our knowledge, [11] were the first to notice that logarithms can appear directly at criticality.
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compatible with, and indeed responsible for, the appearance of logarithms, is because under
the action of the dilatation operator L0, the field t changes as L0t = 2t + T , that is, T is added
to it. This behaviour is mimicking the behaviour of the logarithms, which, under the change
of scale z → λz, change as log(z) → log(λ) + log(z). After [10], many authors worked out
a great number of properties of logarithmic operators [12], whose results we will be using.
However, the logarithmic operator t that we discuss here is special in that it is a logarithmic
partner of the stress tensor T itself. It is for this reason that its presence affects the entire theory
in a profound way. This distinguishes it in a crucial way from other logarithmic operators
discussed elsewhere.

Next, one can show that conformal invariance together with the OPE (5) requires that

t (z)t (0) = −2b log(z)

z4
+

t (0)[1 − 4 log(z)] − T (0)[log(z) + 2 log2(z)]

z2
+ · · · (6)

up to a certain ambiguity, which we fixed by removing all non-logarithmic terms from the
two-point function 〈t (z)t (0)〉, by shifting with T. This OPE replaces the trivial OPE (4). The
OPE (6) contains logarithms which is the direct consequence of t being logarithmic.

Since the OPE (6) contains logarithms, any correlation function of the form 〈t (z)t (w) · · ·〉
will not be single-valued. If we analytically continue z around w, a piece will be added to it.
It is possible to show that this piece will contain a term precisely of the form 〈ξ(z)ξ̄ (w) · · ·〉
where ξ and ξ̄ are (potentially identical) primary operators with conformal weight 2 and a
non-vanishing two-point function. In cases of c = 0 theories with SUSY we clearly want to
match them with the fermionic fields ξ and ξ̄ of the multiplet of figure 1. But since our present
discussion is more general, not assuming any SUSY, these may be bosonic or fermionic. Let
us normalize these operators according to

〈ξ(z)ξ̄ (w)〉 = b

2(z − w)4
. (7)

The only OPE between ξ and ξ̄ compatible with the correlation function (7), with the OPEs
(3), (5), (6), and with conformal invariance is

ξ(z)ξ̄ (0) = αT (z)T (0) +
b

2z4
+

t (0) + T (0) log(z)

z2
+ · · · (8)

where a term whose coefficient α is not fixed by conformal invariance may be added. The
remaining OPEs between the fields ξ , ξ̄ , T and t can also be constructed by conformal
invariance. For example

t (z)ξ(0) = βT (z)ξ(0) − T (z)ξ(0) log z +
ξ ′(0)

2z
+ · · · . (9)

Again the coefficient β is not fixed by conformal invariance. However, the associativity of the
OPE in the three-point function 〈t (z1)ξ(z2)ξ̄ (z3)〉 fixes 2α = β. Additionally, if we choose
ξ , ξ̄ to be fermions, then this imposes β = 1/4, as a consequence of the vanishing of ξ2, ξ̄2.

Now in a most remarkable way it is possible to show that the OPEs (3), (5), (6), (8)
and (9), worked out from conformal invariance alone, using (3) and (5) as a starting point,
and assuming that ξ and ξ̄ are fermionic, are automatically covariant under the action of the
supergroup, as depicted in figure 1.

The OPEs (3), (5), (6), (8) and (9) constitute the first and central result of our letter.
One important comment is in order. The OPEs, such as (6) or (8), contain logarithms and

are therefore not single-valued. One might think this cannot be true, at least in an SUSY theory,
since t and ξ are physical fields, obtained as the ‘zz’ components of the tensors tµν and ξµν

introduced in [3]. As such, they have to be single-valued. As mentioned, the field t (as obtained
by supersymmetry) is defined up to a shift → t + γ T . γ can be regularization dependent, and
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Figure 2. Points z1 and z2 in the bulk of the system and their mirror images z̄1 and z̄2 across the
boundary.

indeed, scale dependent at the critical point, because of t being a logarithmic field. This is
how the renormalized t can become non-single-valued without any contradictions.

The most interesting consequence of our main result is as follows. Suppose we have a
primary field A in our system with conformal weight h. The OPE of this field with itself in,
say, the holomorphic sector will contain the contribution of the identity conformal block in
the following way:

A(z)A(0) = 1

z2h

[
1 +

h

b
{t (0) + log(z)T (0)}z2 + · · ·

]
(10)

that is, it will contain logarithms. As a consequence, the conformal block involving two such
fields will contain logarithms as well, as long as the field’s conformal weight h �= 0. This can
be used as a test if a given disordered system realizes the OPEs with logarithmic t (see the
examples below).

Moreover, the above logic can be reversed. Once a given system exhibits the OPE (10),
we can argue that it is supersymmetric. Indeed, once a primary operator obeys (10), the field
t appears which has to obey (5). Once t obeys (5), the rest of the OPEs such as (6), (8) and
(9) follow from conformal invariance alone. Once these OPEs appear, they are, as mentioned
above, automatically covariant under the SUSY action defined above!

Percolation/polymers: This ends our general discussion, and we will now consider
polymers and percolation (SQHE [6]) as particular examples. Quite remarkably, we will see
that they realize the OPE derived above with a logarithmic t.

Consider for example the two-point function of the (bulk) energy operator ε in percolation
of conformal weight 5/8, in the presence of a conformally invariant boundary. This is believed
to be one of the degenerate Kac-table operators at c = 0 [13]. This function corresponds [14]
to a holomorphic four-point function without boundary, with operators located at z1, z2 and
their mirror images at z̄1, z̄2, as in figure 2.

The latter can be found by solving the appropriate differential equation, with solution

〈ε(z1)ε(z2)〉bdr = 1

|z1 − z2| 5
2 (1 − x)

5
4

[
(1 − x)2F

(
−1

2
,

3

2
; 3; 1 − x

)

+ Cx2F

(
−1

2
,

3

2
; 3; x

)]
(11)

where x = (z1−z2)(z̄1−z̄2)

(z1−z̄2)(z2−z̄1)
, F is the hypergeometric function and C depends on the boundary

condition. As the points move away from the boundary (x → 0), the correlation function
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must turn into the bulk two-point function, implying

(1 − x)2F
(− 1

2 , 3
2 ; 3; 1 − x

)
+ Cx2F

(− 1
2 , 3

2 ; 3; x
)

(1 − x)
5
4

∝ 1 +
15

32
x2 log(x) + · · · x → 0

(12)

independent of C. This demonstrates that this boundary two-point function in percolation,
which is given by the above (chiral) four-point function, indeed contains the logarithms which
are the hallmark of our formalism. The logarithm appearing here is completely consistent
with the OPE (10) if b = 5/6. (Function (11) remains single-valued because x is always a
negative real number.)

We learn two things about percolation from equation (11): (i) Since the logarithmic t
operator is known to appear, the theory possesses global SUSY. This follows from the above
correlation function, computed by exploiting only conformal symmetry. (A manifestly SUSY
invariant formulation of percolation was only very recently found [6].) (ii) The number of
physical degrees of freedom b = 5/6!

The (bulk) energy operator ε (equation (11)) is itself logarithmic. Indeed, the SUSY
formulation of [6] showed that it lies in a multiplet isomorphic to that of the stress tensors.
Therefore, it also has a logarithmic partner, just like the stress energy tensor, whose two-point
function contains logarithms, in agreement with results that can be obtained from the ‘replica’
method of [17]. However, in spite of the presence of the logarithms in the holomorphic and
antiholomorphic sectors one can obtain a single-valued four-point function in the bulk [18].

For polymers we may consider similarly the two-point function of the bulk energy operator,
of conformal weight 1/3, with a boundary as in equation (11). This operator is believed to
be Kac-degenerate [15]. Explicit calculation as above shows that this function contains again
logarithms of the same form as in (12), except that now the coefficient of the log-term is
different. Matching this coefficient with (10) yields b = −5/8. Actually, it appears that all
the differential equations following from the c = 0 Kac-table degeneracies are consistent with
a logarithmic t and its OPEs, if b is chosen to be either 5/6 or −5/8 depending on which
operator we are taking.

This is the second important result of our letter. The c = 0 Kac table contains operators
corresponding to different values of b if we believe that they are degenerate in the standard way
and satisfy the standard differential equations. Therefore, such operators cannot be degenerate
in the same theory, if we believe in the correlation function of equation (11). Take for example
percolation: we cannot trust the degeneracy equation for the operator 1/3, because it leads to
b = −5/8 different from the value found from equation (11) above, in the same theory. One
could try to say that perhaps the same theory contains different fields tb and tb′ which appear
in the OPE (10) for different primary fields with different values of b. However, that would
violate conformal invariance (to say nothing about supersymmetry). Indeed, in that case the
correlation function 〈tb tb′ 〉 would be inconsistent with global conformal invariance. So, one
should treat the differential equations for the correlation functions of polymers and percolation
with care.

Algebraic formulation: We can set up a completely algebraic way to compute the value of
b without solving the differential equations. This is the first step towards a completely algebraic
reformulation of the OPEs (3), (5), (6) and (8). A study of this algebra and classification of
its representations is likely to lead to a description of a quite general class of new disordered
critical points.

Concentrate for now on the part of the algebra generated by T (z) and t (z) only. The OPE
between t (z) and any primary field A(w) reads (by analogy with (9))
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t (z)A(0) = −T (z)A(0) log(z) +
1
2A′(0)

z
+ · · · (13)

where · · · represent the regular terms in the Laurent-expansion (no logarithms). This allows
us to set up a mode expansion of the field t when acting on any primary field A as follows:

lnA(0) =
∮

dz zn+1[t (z) + T (z) log(z)]A(0). (14)

The argument of the integral is arranged in such a way that it is single-valued as z goes around 0.
This definition leads to the commutation relations between ln and Ln in a standard way

[Ln, lm] = b

6
(n3 − n)δn+m,0 + (n − m)ln+m + nLn+m. (15)

This, together with the Virasoro commutation relations allows us to check that the conformal
weight 5/8 operator’s null vector is primary with respect to both Virasoro (Ln) and ln generators
only if b = 5/6. This is in agreement with the value of b extracted from the (chiral) four-point
function computed earlier in this letter. After checking the operators degenerate down to the
sixth level, we discovered that the degeneracy of all the operators of the form (1, q) with q > 2
which we were able to check required b = −5/8, while the operators of the form (q, 1) and
(q, 2), q > 1, required b = 5/6. The rest of the Kac table operators are consistent with (15)
with arbitrary b.5 It is natural to conjecture that this is true of all Kac-table operators, not only
of those degenerate down to the sixth level, but the mathematical proof of that, based on (15)
and the Virasoro algebra, has not yet been obtained.

Replica theories: Remarkably, we can explicitly identify the logarithmic field t in ‘replica’
theories, where no SUSY is manifest at the outset. For example, in random bond ferromagnets,
a multiplicatively renormalizable partner T̃

a
of the stress tensor T appears, transforming in

the (n − 1)-dimensional representation of the replica permutation group [16, 17]. T̃
a

is
primary of dimension �(n) → 2 as n, c → 0. We have verified that in this limit the field(
T̃ a + 1

n
T

)
is finite and satisfies the OPEs required of t, with −1/2b = ∂�(n)

∂c

∣∣
c=0. Hence we

arrive at the striking conclusion that the replica treatment of such random systems (allowing
for interactions) harbours a hidden SUSY. For polymers and percolation, n is replaced by a
corresponding multiplicity, and �(n) naturally coincides with the dimension of (3, 1) or (1, 5)

operators.

The authors are grateful to I Gruzberg, M Jeng, N Read, H Saleur, and especially to J Cardy,
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